| 1. | According to the description of space - time wave function in 第四节时空波函数 |
| 2. | Quantization of analytical space - time function of space - time wave 解析时空的量子化与时空波函数 |
| 3. | Since space - time wave is elastic , we calculate its wave - power : energy at time 这里我们引入一个波的功率概念,若 |
| 4. | Supposing space - time wave is simple periodic vibration at speed 由上节所述时空波函数,设时空以波的形式沿x方向以速度 |
| 5. | With space - time wave function 时空波动方程 |
| 6. | In a broader view , a simple periodic motion is a form of space - time wave 更广义的意义上讲,任何简谐运动均属于时空波动方程的表现形式,我们已经不仅把 |
| 7. | When discussing energy of space - time wave function stwf , we have to add a restricted condition : for observers , stwf should meet the condition 倍以下讨论时空波的能量问题,在此之前我们必须加一个限定条件,即时空波函数对观测者而言应满足 |
| 8. | Note : we see that there are exactly two periods of quantum wave in a period of space time wave or quantum spin of 2 revolutions returns to its original or starting state 内波能以等量等间隔出现,这一现象就是在量子力学中通常所说的能量的量子化。 |
| 9. | Furthermore , according to stwf , we will demonstrate schrdinger equation strictly , and make it , a hypothesis in quantum mechanics , a theoretical outcome of tast . 2 . 4 space - time wave function 时空波函数方程出发直接严格地证明薛定谔方程,使其从量子理论的假设成为解析时空理论的时空波函数方程下的一个理论结果! |
| 10. | Not only do we use formula to express varieties of space for coordinates , but it also becomes the expression of transferring more information among different space - time systems by way of space - time wave 式看成描述空间变化的关系式,它已成为运动时空以波的方式传递不同时空体系的信息的表达式:时空波动方程。 |